

# South African experiences with wastewater based epidemiology for SARS-CoV-2

Kerrigan McCarthy, Said Rachida, Nkosenhle Ndlovu, Chinwe Iwu-Jaja, Mukhlid Yousif

For the

SOUTH AFRICAN COLLABORATIVE COVID-19 ENVIRONMENTAL SURVEILLANCE SYSTEM (SACCESS)



BILL& MELINDA GATES foundation





• Acknowledgements

BILL& MELINDA

GATES foundation

- NICD team
- Funders

NATIONAL INSTITUTE FOR COMMUNICABLE DISEASES Division of the National Health Laboratory Service

COMMISSION

**WATER** RESEARCH

SACHESS





**Division of the National Health Laboratory Service** 

MRC

WATERLAB

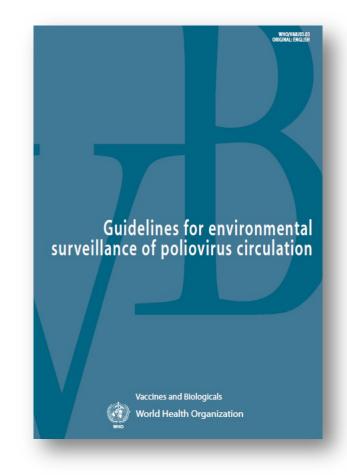
CSIR

advancinglif





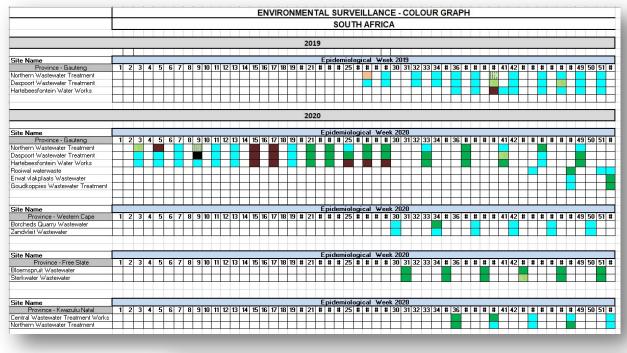
### South African experiences with wastewaterbased epidemiology for SARS-CoV-2


- The beginnings of the SACCESS network from polio environmental surveillance to SARS-CoV-2
- 2. SARS-CoV-2 quantitative and sequencing results in wastewater results
- 3. Sequencing SARS-CoV-2 in wastewater successes
- 4. Challenges for wastewater based epidemiology
- 5. What is the future of wastewater based epidemiology in South Africa?



### The beginnings – from polio to SARS-CoV-2 environmental surveillance

- WHO recommends environmental surveillance for polio to
  - Monitoring enteric virus circulation
  - Detecting wild-type poliovirus
  - Monitoring circulating vaccine-derived poliovirus
- The NICD is a WHO Polio Collaborating Centre and was appointed as a regional reference laboratory prior to 2010
- NICD Centre for Vaccines and Immunology commenced with polio environmental surveillance in 2018, in line with WHO suggestions.
- These data inform RSA on presence of
  - wild polio virus (last detected in clinical cases in 1989),
  - sabin-like virus (oral polio vaccine) and
  - non-polio enterovirus


in the national sewer system and hence in patients





# The beginnings – from polio to SARS-CoV-2 environmental surveillance

- Successes of polio ES in RSA
  - Regular sampling from 18 sites in all Metros across RSA
  - Detection of Sabin strain
  - Detection of Sabin-like virus with 7 mutations
  - No cVDPV (despite 2 clinical cases of immunodeficcient VDPV detected in 2017 and 2019)



| 1 | Not scheduled 6 Sa |    | Sabin-Like        | 11   | WPV1+cVDPV2                 | 16   | NEV + NPEV       |  |  |  |
|---|--------------------|----|-------------------|------|-----------------------------|------|------------------|--|--|--|
| 2 | Pending            | 7  | NPEV + Sabin-Like | 12   | Sent for sequencing         | 17   | NEV + Sabin-Like |  |  |  |
| 3 | Negative           | 8  | cVDPV2            | 13   | Scheduled but not collected | 18 🔢 | Sabin            |  |  |  |
| 4 | NEV                | 9  | WPV1              | 14   | Sabin 2                     | 19   | Sabin + NPEV     |  |  |  |
| 5 | NPEV               | 10 | WPV3              | 15 🔳 | Sabin-Like + NPEV + NEV     |      |                  |  |  |  |



### The beginnings – from polio to SARS-CoV-2 environmental surveillance

- Emerging interest in use of SARS-CoV-2 in wastewater to monitor epidemiological patterns as early as April/May 2020
- First published results appeared in August 2020 from a number of countries including Australia, Italy, USA
- Melinda Suchard from NICD Centre for Vaccines and Immunology initiated SARS-CoV-2 testing using polio wastewater samples





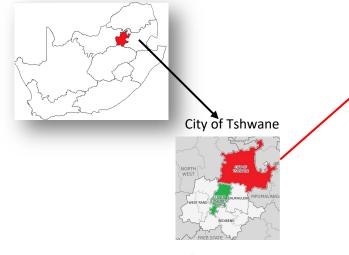
....

### The beginnings – from polio to SARS-CoV-2 environmental surveillance

The SACCESS network comprises 8 laboratories which test **87** wastewater treatment plants every week across South Africa:

Free State: 9 Eastern Cape: 10 Gauteng: 40 Mpumalanga: 3 Northern Cape: 2 Kwazulu-Natal: 12 Western Cape: 5 Limpopo: 2 North West: 3

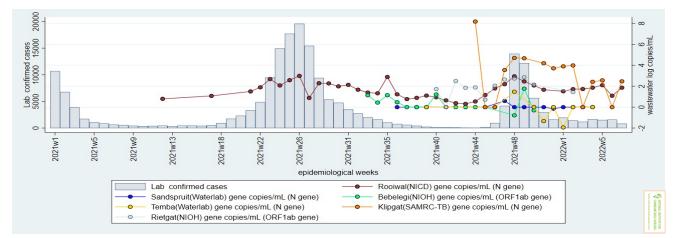
The network is funded by the NICD and the Water Research Commission (WRC)



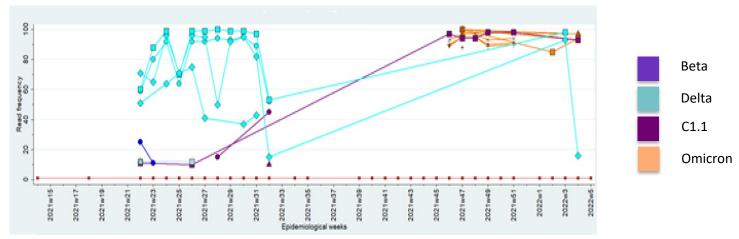





### Current trends in SARS-CoV-2 levels and variants present across Gauteng


South Africa Gauteng Province

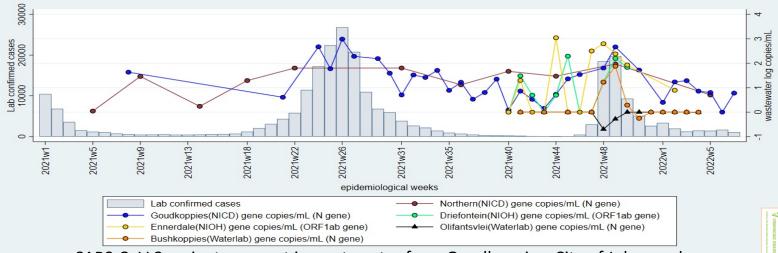



City of Johannesburg

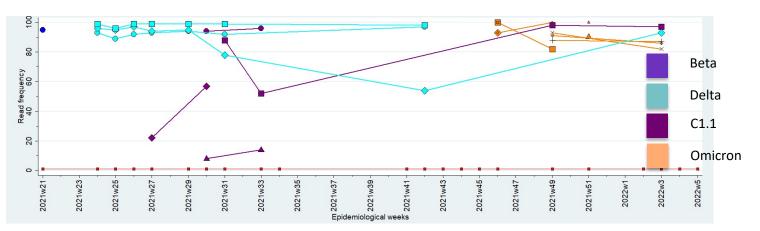
### City of Tshwane, Gauteng Province

Levels of SARS-CoV-2 present in wastewater from wastewater plants, City of Tshwane

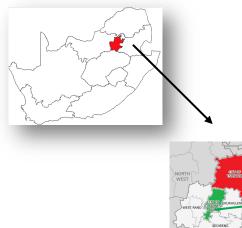



#### SARS-CoV-2 variants present in wastewater from Daspoort, City of Tshwane






### Gauteng wastewater treatment plants

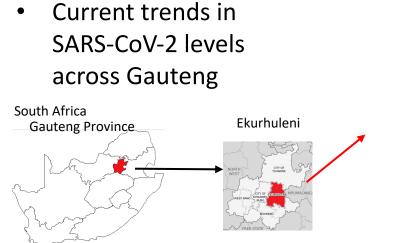

Levels of SARS-CoV-2 present in wastewater from wastewater plants, City of Johannesburg

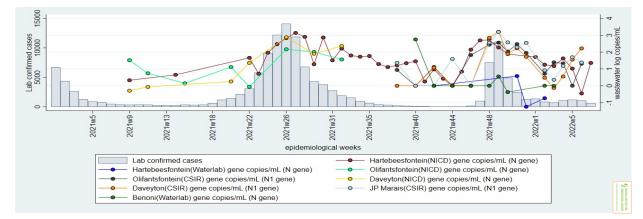


SARS-CoV-2 variants present in wastewater from Goudkoppies, City of Johannesburg

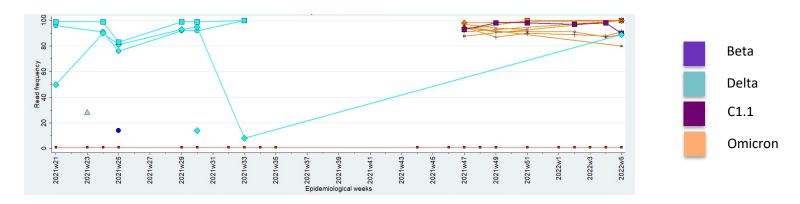


 Current trends in SARS-CoV-2 levels across Gauteng
South Africa Gauteng Province





City of Johannesburg



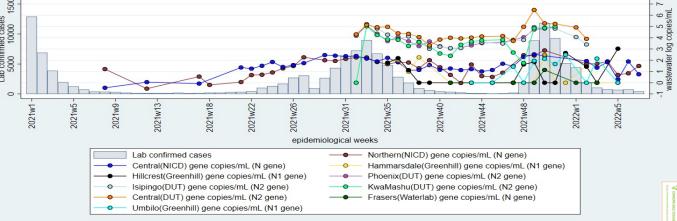

### Gauteng wastewater treatment plants

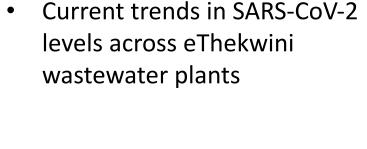
Levels of SARS-CoV-2 present in wastewater from wastewater plants, City of Ekurhuleni





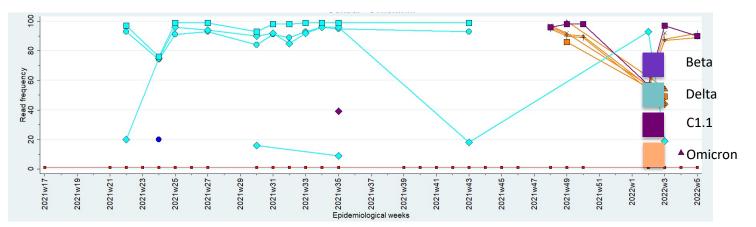
SARS-CoV-2 variants present in wastewater from Hartbeesfontein, City of Ekurhuleni




### Ethekwini wastewater treatment plants

Levels of SARS-CoV-2 present in wastewater from wastewater plants, eThekwini

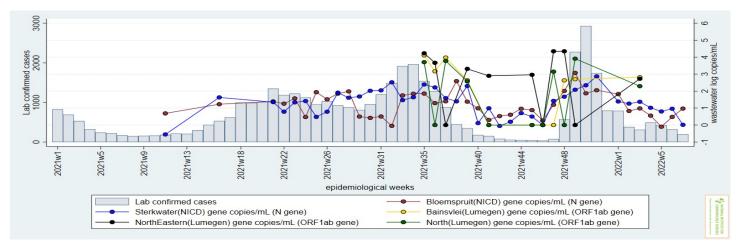

15000 10000 1 ab confir 5000 2021w5 2022w5 2021 00 0 epidemiological weeks Lab confirmed cases Northern(NICD) gene copies/mL (N gene) ----- Central(NICD) gene copies/mL (N gene) Hammarsdale(Greenhill) gene copies/mL (N1 gene) Hillcrest(Greenhill) gene copies/mL (N1 gene) Phoenix(DUT) gene copies/mL (N2 gene) 0 Isipingo(DUT) gene copies/mL (N2 gene) KwaMashu(DUT) gene copies/mL (N2 gene) Central(DUT) gene copies/mL (N2 gene) Frasers(Waterlab) gene copies/mL (N gene) Umbilo(Greenhill) gene copies/mL (N1 gene)



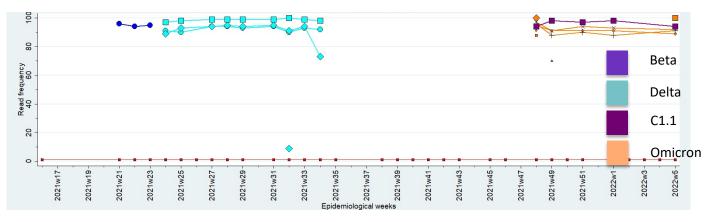




#### SARS-CoV-2 variants present in wastewater from Central WWTP, eThekwini




#### South Africa




### Mangaung waste water treatment plants

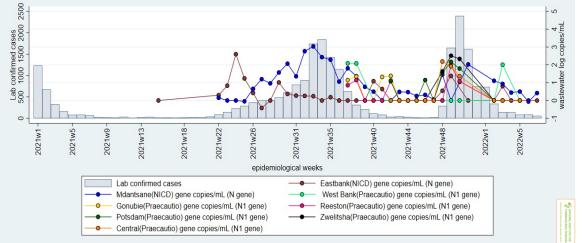
Levels of SARS-CoV-2 present in wastewater from wastewater plants, Mangaung



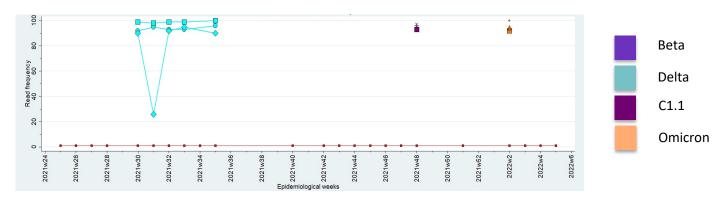
#### SARS-CoV-2 variants present in wastewater from Bloemspruit WWTP, Mangaung



 Current trends in SARS-CoV-2 levels across Mangaung wastewater plants




Mangaung




### Eastern Cape wastewater treatment plants

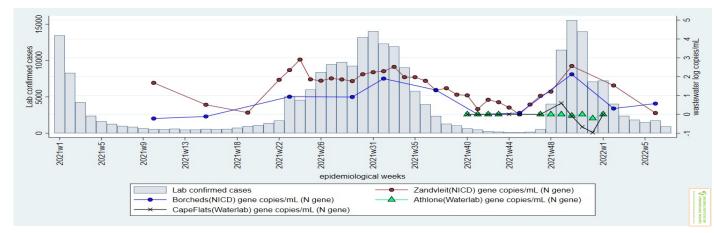
Levels of SARS-CoV-2 present in wastewater from wastewater plants, Mangaung



#### SARS-CoV-2 variants present in wastewater from Bloemspruit WWTP, Mangaung



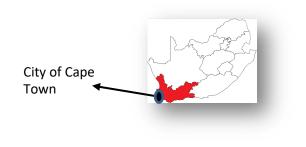
 Current trends in SARS-CoV-2 levels across NMMB wastewater plants







 Current trends in SARS-CoV-2 levels across City of Cape Town wastewater plants


### City of Cape Town wastewater treatment plants

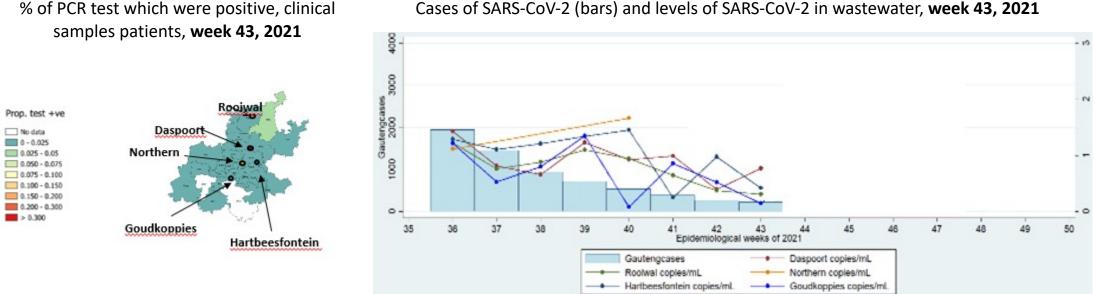
Levels of SARS-CoV-2 present in wastewater from wastewater plants, Mangaung



#### SARS-CoV-2 variants present in wastewater from Bloemspruit WWTP, Mangaung








- Convincing public health managers that wastewater is a useful surveillance tool
  - Good correlations between cases and admissions with SARS-CoV-2 levels in wastewater

|                        |                            | -       |             |         |                 | i.                              | -       |              |         | -               |                                         | -       |           |         |                |
|------------------------|----------------------------|---------|-------------|---------|-----------------|---------------------------------|---------|--------------|---------|-----------------|-----------------------------------------|---------|-----------|---------|----------------|
|                        | Cases vs wastewater levels |         |             |         |                 | Admissions vs wastewater levels |         |              |         |                 | In hospital deaths vs wastewater levels |         |           |         |                |
| Wastewater plants      | Correlation co-            | p-value | Regression  | p-value | R squared       | Correlati                       | p-value | Regression   | p-value | R squared       | Correlati                               | p-value | Regressio | p-value | R squared (co- |
|                        | efficient                  |         | coefficient |         | (Coeeficient of | on co-                          |         | co-efficient |         | (Coeeficient of | on co-                                  |         | n co-     |         | efficient of   |
|                        | (Spearman's)               |         |             |         | determination)  | efficient                       |         |              |         | determination)  | efficient                               |         | efficient |         | determination) |
|                        |                            |         |             |         |                 | (Spearm                         |         |              |         |                 | (Spearm                                 |         |           |         | 89<br>         |
|                        |                            |         |             |         |                 | an's)                           |         |              |         |                 | an's)                                   |         |           |         |                |
| Goudkoppies            | 0.7489                     | 0.0001  | 8488.301    | 0.0001  | 0.5815          | 0.7519                          | 0.0001  | 849.1814     | 0.0000  | 0.6134          | 0.7684                                  | 0.0001  | 195.6434  | 0.0001  | 0.5979         |
| Northern               | 0.3095                     | 0.4556  | 1381.574    | 0.2383  | 0.2222          | 0.3333                          | 0.4198  | 100.8705     | 0.5783  | 0.0544          | 0.2515                                  | 0.5479  | 24.52558  | 0.6213  | 0.0432         |
| Goudkoppies + Northern |                            |         |             |         |                 |                                 |         |              |         |                 |                                         |         |           |         |                |
| Rooiwal                | 0.7513                     | 0.0000  | 4815.663    | 0.0020  | 0.3595          | 0.7200                          | 0.0001  | 463.8325     | 0.0011  | 0.3900          | 0.6690                                  | 0.0004  | 98.40376  | 0.0042  | 0.3169         |
| Daspoort               | 0.8948                     | 0.0000  | 5492.838    | 0.0000  | 0.6424          | 0.8948                          | 0.0000  | 554.2203     | 0.0000  | 0.7585          | 0.8434                                  | 0.8434  | 114.3431  | 0.0000  | 0.5962         |
| Olifantsfontein        | 0.4762                     | 0.2329  | 3114.056    | 0.1546  | 0.3064          | 0.6190                          | 0.1017  | 371.1455     | 0.0827  | 0.4190          | 0.7306                                  | 0.0396  | 128.4205  | 0.0372  | 0.5424         |
| Vlakplaats             | 0.7061                     | 0.0033  | 3078.111    | 0.0658  | 0.4059          | 0.7312                          | 0.0020  | 433.1515     | 0.0106  | 0.4059          | 0.7563                                  | 0.0011  | 135.0431  | 0.0050  | 0.4666         |
| Daveyton               | 0.8929                     | 0.0068  | 2882.361    | 0.0532  | 0.5594          | 0.8571                          | 0.0137  | 315.0192     | 0.0233  | 0.6756          | 0.9286                                  | 0.0025  | 94.7016   | 0.0295  | 0.6455         |
| Hartebeesfontein       | 0.7075                     | 0.0002  | 3723.197    | 0.0002  | 0.4800          | 0.7131                          | 0.0001  | 432.6562     | 0.0001  | 0.5474          | 0.7734                                  | 0.0000  | 133.0977  | 0.0000  | 0.6022         |



- Convincing public health managers that wastewater is a useful surveillance tool
  - Many epidemiologists were sceptical about the value of wastewater
  - Early in the 4<sup>th</sup> wave, we started picking up increases in levels in Tshwane plants



Cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in wastewater, week 43, 2021

Wastewater levels (lines) at selected treatment plants, by total Gauteng cases, epi weeks 36-47,

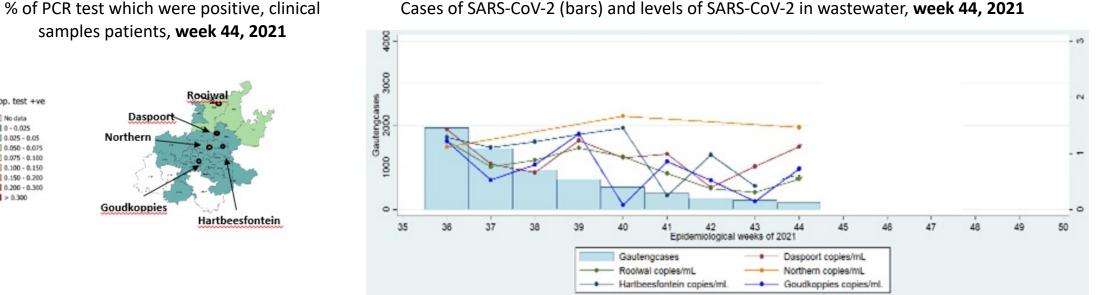


Rooiwa

Daspoor

Northern

Goudkoppies

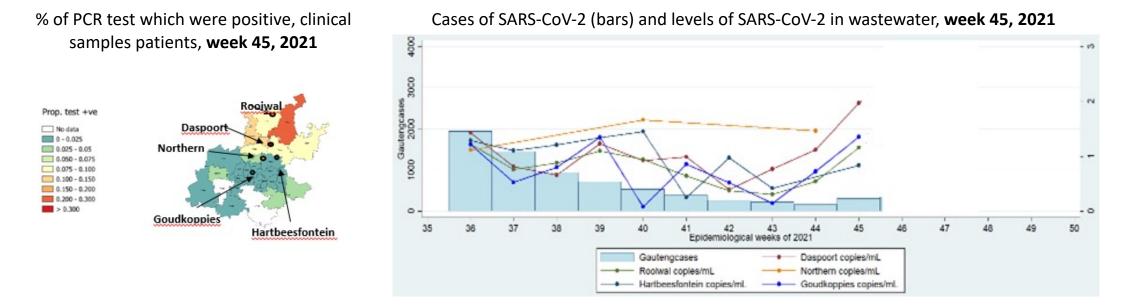

Prop. test +ve

0.025 - 0.05 0.050 - 0.075

0.075 - 0.10 0.100 - 0.150 0.150 - 0.200 0.200 - 0.300 > 0.300

No data 0 - 0.025

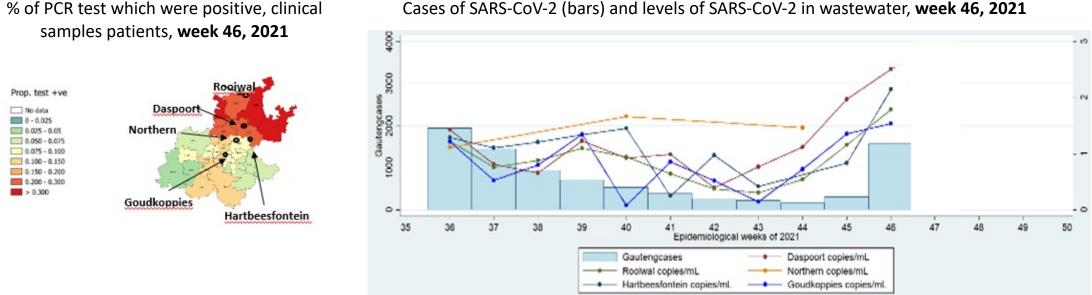
- Convincing public health managers that wastewater is a useful surveillance tool
  - Many epidemiologists were sceptical about the value of wastewater
  - Early in the 4<sup>th</sup> wave, we started picking up increases in levels in Tshwane plants




Cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in wastewater, week 44, 2021

Wastewater levels (lines) at selected treatment plants, by total Gauteng cases, epi weeks 36-47,



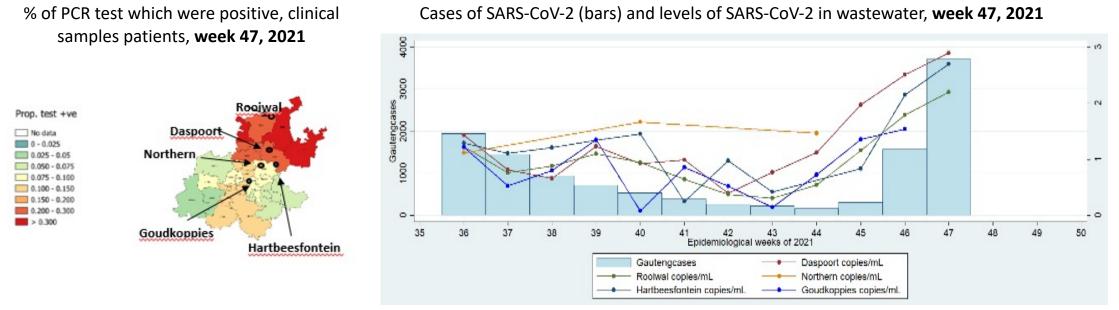

- Convincing public health managers that wastewater is a useful surveillance tool
  - Many epidemiologists were sceptical about the value of wastewater
  - Early in the 4<sup>th</sup> wave, we started picking up increases in levels in Tshwane plants



Wastewater levels (lines) at selected treatment plants, by total Gauteng cases, epi weeks 36-47,



- Convincing public health managers that wastewater is a useful surveillance tool
  - Many epidemiologists were sceptical about the value of wastewater
  - Early in the 4<sup>th</sup> wave, we started picking up increases in levels in Tshwane plants




Cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in wastewater, week 46, 2021

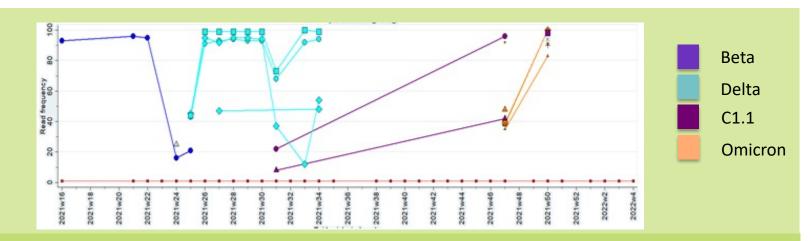
Wastewater levels (lines) at selected treatment plants, by total Gauteng cases, epi weeks 36-47,



- Convincing public health managers that wastewater is a useful surveillance tool
  - Many epidemiologists were sceptical about the value of wastewater
  - Early in the 4<sup>th</sup> wave, we started picking up increases in levels in Tshwane plants



Wastewater levels (lines) at selected treatment plants, by total Gauteng cases, epi weeks 36-47,


# Sequencing SARS-CoV-2 in wastewater – successes

• • • •

- Convincing public health managers that wastewater is a useful surveillance tool
- Wastewater sequence findings correspond with clinical SARS-CoV-2 sequences both by time and location


.

SNP mutations corresponding with specific variants identified in wastewater samples



 Read frequency of SNPs corresponds with proportion of isolates in population

SARS-CoV-2 variants from clinical isolates obtained from Free State province (n=c.1300)




# Challenges for wastewater based epidemiology

- Quantification
  - Methodology
    - Standardising methods
    - Eliminating variation where possible (e.g. due to rainfall)
    - Turn-around-time
  - Interpretation of results
    - When is an increase something to worry about?
  - Utilisation and confidence in results
    - Getting policy makers to use results
  - Uptake of results by public
    - Getting the public to trust and use results



# Challenges for wastewater based epidemiology

- Quantification
  - Methodology
    - Standardising methods
    - Eliminating variation where possible (e.g. due to rainfall)
    - Turn-around-time
  - Interpretation of results
    - When is an increase something to worry about?
  - Utilisation and confidence in results
    - Getting policy makers to use results
  - Uptake of results by public
    - Getting the public to trust and use results



- Genomics
  - Methodology
    - Reliable amplification of RNA, especially when SARS-Cov-2 is present at low levels
    - Methods only work for known VOC/variants identified by clinical samples
      - Need to develop methods to detect signals when new variants are present
    - Turn around time



# What is the future of wastewater based epidemiology in South Africa?

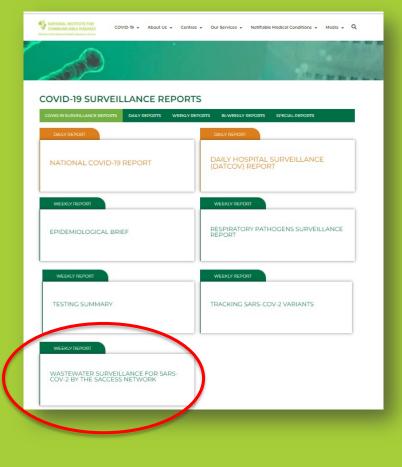


### FOCUS AREAS for 2022

- Strengthening communication tools
- Advocating public and policy-maker use of data
- Formulating interpretive thresholds and models
- Strengthening interpretation of results in relation to population health of persons contributing to sewer network
- Widening scope of network to include other communicable diseases
  - Hepatitis A, measles, influenza, tuberculosis, antimicrobial resistance



#### Soon to come – wastewater dashboard




# **THANK YOU**



Weekly wastewater surveillance reports are published on the NICD website.

https://www.nicd.ac.za/dise ases-a-z-index/diseaseindex-covid-19/surveillance-reports/

