South African experiences with wastewater based epidemiology for SARS-CoV-2

Kerrigan McCarthy, Said Rachida, Nkosenhle Ndlovu, Chinwe Iwu-Jaja, Mukhlid Yousif

For the

SOUTH AFRICAN COLLABORATIVE COVID-19 ENVIRONMENTAL SURVEILLANCE SYSTEM (SACCESS)
• Acknowledgements
 – NICD team
 – Funders
South African experiences with wastewater-based epidemiology for SARS-CoV-2

1. The beginnings of the SACCESS network – from polio environmental surveillance to SARS-CoV-2
2. SARS-CoV-2 quantitative and sequencing results in wastewater – results
3. Sequencing SARS-CoV-2 in wastewater – successes
4. Challenges for wastewater based epidemiology
5. What is the future of wastewater based epidemiology in South Africa?
The beginnings – from polio to SARS-CoV-2 environmental surveillance

• WHO recommends environmental surveillance for polio to
 – Monitoring enteric virus circulation
 – Detecting wild-type poliovirus
 – Monitoring circulating vaccine-derived poliovirus
• The NICD is a WHO Polio Collaborating Centre and was appointed as a regional reference laboratory prior to 2010
• NICD Centre for Vaccines and Immunology commenced with polio environmental surveillance in 2018, in line with WHO suggestions.
• These data inform RSA on presence of
 – wild polio virus (last detected in clinical cases in 1989),
 – sabin-like virus (oral polio vaccine) and
 – non-polio enterovirus
 in the national sewer system and hence in patients
The beginnings – from polio to SARS-CoV-2 environmental surveillance

- Successes of polio ES in RSA
 - Regular sampling from 18 sites in all Metros across RSA
 - Detection of Sabin strain
 - Detection of Sabin-like virus with 7 mutations
 - No cVDPV (despite 2 clinical cases of immunodeficient VDPV detected in 2017 and 2019)
• Emerging interest in use of SARS-CoV-2 in wastewater to monitor epidemiological patterns as early as April/May 2020

• First published results appeared in August 2020 from a number of countries including Australia, Italy, USA

• Melinda Suchard from NICD Centre for Vaccines and Immunology initiated SARS-CoV-2 testing using polio wastewater samples

The beginnings – from polio to SARS-CoV-2 environmental surveillance
The SACCESS network comprises 8 laboratories which test 87 wastewater treatment plants every week across South Africa:

- Free State: 9
- Eastern Cape: 10
- Gauteng: 40
- Mpumalanga: 3
- Northern Cape: 2
- Kwazulu-Natal: 12
- Western Cape: 5
- Limpopo: 2
- North West: 3

The network is funded by the NICD and the Water Research Commission (WRC).

The beginnings – from polio to SARS-CoV-2 environmental surveillance
Quantitative SARS-CoV-2 in wastewater – results

- Current trends in SARS-CoV-2 levels and variants present across Gauteng

City of Tshwane, Gauteng Province
Levels of SARS-CoV-2 present in wastewater from wastewater plants, City of Tshwane

SARS-CoV-2 variants present in wastewater from Daspoort, City of Tshwane
Quantitative SARS-CoV-2 in wastewater – results

- Current trends in SARS-CoV-2 levels across Gauteng

Levels of SARS-CoV-2 present in wastewater from wastewater plants, City of Johannesburg

SARS-CoV-2 variants present in wastewater from Goudkoppies, City of Johannesburg
Quantitative SARS-CoV-2 in wastewater – results

Gauteng wastewater treatment plants

- Current trends in SARS-CoV-2 levels across Gauteng

Levels of SARS-CoV-2 present in wastewater from wastewater plants, City of Ekurhuleni

SARS-CoV-2 variants present in wastewater from Hartbeesfontein, City of Ekurhuleni
Quantitative SARS-CoV-2 in wastewater – results

• Current trends in SARS-CoV-2 levels across eThekwini wastewater plants

South Africa
KwaZulu-Natal Province

SARS-CoV-2 variants present in wastewater from Central WWTP, eThekwini

Beta
Delta
C1.1
Omicron
Quantitative SARS-CoV-2 in wastewater – results

Mangaung waste water treatment plants

Levels of SARS-CoV-2 present in wastewater from wastewater plants, Mangaung

- Current trends in SARS-CoV-2 levels across Mangaung wastewater plants

SARS-CoV-2 variants present in wastewater from Bloemspruit WWTP, Mangaung
Quantitative SARS-CoV-2 in wastewater – results

• Current trends in SARS-CoV-2 levels across NMMB wastewater plants

Eastern Cape wastewater treatment plants

Levels of SARS-CoV-2 present in wastewater from wastewater plants, Mangaung

SARS-CoV-2 variants present in wastewater from Bloemspruit WWTP, Mangaung

- Beta
- Delta
- C1.1
- Omicron
Quantitative SARS-CoV-2 in wastewater – results

City of Cape Town wastewater treatment plants

- Current trends in SARS-CoV-2 levels across City of Cape Town wastewater plants

Levels of SARS-CoV-2 present in wastewater from wastewater plants, Mangaung

SARS-CoV-2 variants present in wastewater from Bloemspruit WWTP, Mangaung

City of Cape Town
Quantitative SARS-CoV-2 in wastewater – successes

- Convincing public health managers that wastewater is a useful surveillance tool
 - Good correlations between cases and admissions with SARS-CoV-2 levels in wastewater

<table>
<thead>
<tr>
<th>Wastewater plants</th>
<th>Correlation coefficient (Spearman’s)</th>
<th>p-value</th>
<th>Regression coefficient</th>
<th>p-value</th>
<th>R squared (Coefficient of determination)</th>
<th>Correlation coefficient (Spearman’s)</th>
<th>p-value</th>
<th>Regression coefficient</th>
<th>p-value</th>
<th>R squared (Coefficient of determination)</th>
<th>Correlation coefficient (Spearman’s)</th>
<th>p-value</th>
<th>Regression coefficient</th>
<th>p-value</th>
<th>R squared (Coefficient of determination)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goudkoppies</td>
<td>0.7489</td>
<td>0.0001</td>
<td>8488.301</td>
<td>0.0001</td>
<td>0.5815</td>
<td>0.7519</td>
<td>0.0001</td>
<td>849.1814</td>
<td>0.0000</td>
<td>0.6134</td>
<td>0.7684</td>
<td>0.0001</td>
<td>195.6434</td>
<td>0.0001</td>
<td>0.5970</td>
</tr>
<tr>
<td>Northern</td>
<td>0.3095</td>
<td>0.4556</td>
<td>1381.574</td>
<td>0.2383</td>
<td>0.2222</td>
<td>0.3333</td>
<td>0.4198</td>
<td>100.8705</td>
<td>0.5783</td>
<td>0.0544</td>
<td>0.2515</td>
<td>0.5479</td>
<td>24.52558</td>
<td>0.6113</td>
<td>0.0432</td>
</tr>
<tr>
<td>Goudkoppies + Northern</td>
<td>0.7513</td>
<td>0.0000</td>
<td>4815.663</td>
<td>0.0020</td>
<td>0.3595</td>
<td>0.7200</td>
<td>0.0001</td>
<td>463.8325</td>
<td>0.0011</td>
<td>0.3900</td>
<td>0.6650</td>
<td>0.0004</td>
<td>98.40376</td>
<td>0.0042</td>
<td>0.3169</td>
</tr>
<tr>
<td>Roodeval</td>
<td>0.8948</td>
<td>0.0000</td>
<td>5492.838</td>
<td>0.0000</td>
<td>0.6424</td>
<td>0.8948</td>
<td>0.0000</td>
<td>554.2203</td>
<td>0.0000</td>
<td>0.7585</td>
<td>0.8434</td>
<td>0.0000</td>
<td>114.3431</td>
<td>0.0000</td>
<td>0.5962</td>
</tr>
<tr>
<td>Dassieport</td>
<td>0.4762</td>
<td>0.2329</td>
<td>3114.056</td>
<td>0.1546</td>
<td>0.3064</td>
<td>0.6190</td>
<td>0.1017</td>
<td>371.1455</td>
<td>0.0827</td>
<td>0.4190</td>
<td>0.7306</td>
<td>0.0396</td>
<td>128.4205</td>
<td>0.0372</td>
<td>0.5424</td>
</tr>
<tr>
<td>Olifantsfontein</td>
<td>0.7061</td>
<td>0.0033</td>
<td>3078.111</td>
<td>0.0658</td>
<td>0.4059</td>
<td>0.7312</td>
<td>0.0020</td>
<td>433.1515</td>
<td>0.0106</td>
<td>0.4059</td>
<td>0.7563</td>
<td>0.0011</td>
<td>135.0431</td>
<td>0.0050</td>
<td>0.4666</td>
</tr>
<tr>
<td>Vlakplaas</td>
<td>0.8929</td>
<td>0.0068</td>
<td>2882.361</td>
<td>0.0532</td>
<td>0.3594</td>
<td>0.8571</td>
<td>0.0137</td>
<td>315.0192</td>
<td>0.0233</td>
<td>0.6750</td>
<td>0.9286</td>
<td>0.0029</td>
<td>94.7016</td>
<td>0.0295</td>
<td>0.6455</td>
</tr>
<tr>
<td>Davelton</td>
<td>0.7075</td>
<td>0.0002</td>
<td>3723.197</td>
<td>0.0400</td>
<td>0.5713</td>
<td>0.7131</td>
<td>0.0001</td>
<td>423.8562</td>
<td>0.0001</td>
<td>0.5474</td>
<td>0.7734</td>
<td>0.0000</td>
<td>133.9977</td>
<td>0.0000</td>
<td>0.6022</td>
</tr>
</tbody>
</table>
Quantitative SARS-CoV-2 in wastewater – successes

- Convincing public health managers that wastewater is a useful surveillance tool
 - Many epidemiologists were sceptical about the value of wastewater
 - Early in the 4th wave, we started picking up increases in levels in Tshwane plants

% of PCR test which were positive, clinical samples patients, week 43, 2021

Cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in wastewater, week 43, 2021

Wastewater levels (lines) at selected treatment plants, by total Gauteng cases, epi weeks 36-47, 2021
Quantitative SARS-CoV-2 in wastewater – successes

- Convincing public health managers that wastewater is a useful surveillance tool
 - Many epidemiologists were sceptical about the value of wastewater
 - Early in the 4th wave, we started picking up increases in levels in Tshwane plants

% of PCR test which were positive, clinical samples patients, **week 44, 2021**

Cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in wastewater, **week 44, 2021**

Wastewater levels (lines) at selected treatment plants, by total Gauteng cases, epi weeks 36-47, 2021
Quantitative SARS-CoV-2 in wastewater – successes

- Convincing public health managers that wastewater is a useful surveillance tool
 - Many epidemiologists were sceptical about the value of wastewater
 - Early in the 4th wave, we started picking up increases in levels in Tshwane plants

% of PCR test which were positive, clinical samples patients, week 45, 2021

Cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in wastewater, week 45, 2021

Wastewater levels (lines) at selected treatment plants, by total Gauteng cases, epi weeks 36-47, 2021
Quantitative SARS-CoV-2 in wastewater – successes

- Convincing public health managers that wastewater is a useful surveillance tool
 - Many epidemiologists were sceptical about the value of wastewater
 - Early in the 4th wave, we started picking up increases in levels in Tshwane plants

% of PCR test which were positive, clinical samples patients, **week 46, 2021**

Cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in wastewater, **week 46, 2021**

Wastewater levels (lines) at selected treatment plants, by total Gauteng cases, epi weeks 36-47, 2021
Quantitative SARS-CoV-2 in wastewater – successes

- Convincing public health managers that wastewater is a useful surveillance tool
 - Many epidemiologists were sceptical about the value of wastewater
 - Early in the 4th wave, we started picking up increases in levels in Tshwane plants

% of PCR test which were positive, clinical samples patients, **week 47, 2021**

Cases of SARS-CoV-2 (bars) and levels of SARS-CoV-2 in wastewater, **week 47, 2021**

Wastewater levels (lines) at selected treatment plants, by total Gauteng cases, epi weeks 36-47, 2021
Sequencing SARS-CoV-2 in wastewater – successes

- Convincing public health managers that wastewater is a useful surveillance tool

- Wastewater sequence findings correspond with clinical SARS-CoV-2 sequences both by time and location

- Read frequency of SNPs corresponds with proportion of isolates in population

SNP mutations corresponding with specific variants identified in wastewater samples

SARS-CoV-2 variants from clinical isolates obtained from Free State province (n=c.1300)
Challenges for wastewater based epidemiology

• Quantification
 – Methodology
 • Standardising methods
 • Eliminating variation where possible (e.g. due to rainfall)
 • Turn-around-time
 – Interpretation of results
 • When is an increase something to worry about?
– Utilisation and confidence in results
 • Getting policy makers to use results
– Uptake of results by public
 • Getting the public to trust and use results
Challenges for wastewater based epidemiology

- **Quantification**
 - Methodology
 - Standardising methods
 - Eliminating variation where possible (e.g. due to rainfall)
 - Turn-around-time
 - Interpretation of results
 - When is an increase something to worry about?
 - Utilisation and confidence in results
 - Getting policy makers to use results
 - Uptake of results by public
 - Getting the public to trust and use results

- **Genomics**
 - Methodology
 - Reliable amplification of RNA, especially when SARS-Cov-2 is present at low levels
 - Methods only work for known VOC/variants identified by clinical samples
 - Need to develop methods to detect signals when new variants are present
 - Turn around time
What is the future of wastewater based epidemiology in South Africa?

FOCUS AREAS for 2022

• Strengthening communication tools
• Advocating public and policy-maker use of data
• Formulating interpretive thresholds and models
• Strengthening interpretation of results in relation to population health of persons contributing to sewer network
• Widening scope of network to include other communicable diseases
 – Hepatitis A, measles, influenza, tuberculosis, antimicrobial resistance

Soon to come – wastewater dashboard
THANK YOU

Weekly wastewater surveillance reports are published on the NICD website.

https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/surveillance-reports/